
International Journal of Computer Trends and Technology Volume 72 Issue 10, 106-112, October 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I10P117 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Kubernetes: Ensuring High Availability for Your

Applications

Praveen Chaitanya Jakku

DevOps Engineer, Aubrey, TX, USA.

Corresponding Author : pcjakku@gmail.com

Received: 02 September 2024 Revised: 05 October 2024 Accepted: 19 October 2024 Published: 30 October 2024

Abstract - This Paper offers practical strategies to ensure High Availability (HA) for your Kubernetes applications. It breaks

down the key components of Kubernetes, including the control plane, worker nodes, pods, and services, and provides actionable

tips for keeping everything running smoothly. You’ll learn about important practices like setting up multi-region and multi-cluster

configurations, maintaining enough pod replicas, balancing workloads effectively, and creating solid disaster recovery plans. By

following these recommendations, organizations can keep their applications consistently available, reduce downtime, and

improve overall system reliability.

Keywords - Kubernetes, DevOps, Application Infrastructure, Business, Workflow, End-user/Customer satisfaction, Security,

Team collaboration, DR.

1. Introduction

In today’s digital world, applications are essential for

businesses, and ensuring they are always available is crucial.

Even a short period of downtime can lead to lost revenue,

unhappy customers, and a damaged reputation. Many

companies strive for 99.9% uptime, allowing for just a few

minutes of downtime each month.

Kubernetes is a powerful tool that helps build highly

available (HA) applications. It offers the features needed to

create a resilient environment, minimizing downtime and

maximizing uptime. This guide will explore the key steps and

best practices for achieving high availability in Kubernetes.

By understanding its core components and implementing

effective strategies, your team can ensure that applications run

smoothly and deliver exceptional performance, even when

challenges arise.

2. Kubernetes Architecture Overview
Kubernetes is a powerful tool for managing containerized

applications. It ensures these applications are always available

and can easily scale to meet demand. Imagine Kubernetes as a

manager overseeing a team of workers.

2.1. Key Roles

2.1.1. Control plane/Master Node

This is the manager responsible for controlling the entire

system.

Kubernetes master node is the main control point that

directs how the cluster operates and manages the resources.

API Server

The main communication point for managing the system.

Controller Manager

Ensures everything is running as planned.

Scheduler

Decide where to place the work (pods) on the worker

nodes.

2.1.2. Worker Nodes

These are the workers (worker nodes) running your

applications.

Kubelet

Makes sure the work (containers) is done correctly.

Kube Proxy

Kube Proxy helps to handle the network traffic for your

application by making sure that requests get sent to the right

pods and are spread out evenly across them within the cluster.

Container Runtime

Is the software responsible for running and managing

containers, such as Docker or containerd.

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Praveen Chaitanya Jakku / IJCTT, 72(10), 106-112, 2024

2

 Worker

Master (Control plane)

Controller

Manager

Scheduler

API Server

Etcd

 Worker

Kubelet

Kube-Proxy

Kubelet

Kube-Proxy

Fig. 1 Single Master, Multi Worker Nodes Kubernetes Architecture

2.1.3. Pods and Services

Pods

The smallest units of work are in Kubernetes. Think of

them as individual projects.

Services

Groups of pods that work together. This ensures

consistent access and load balancing.

2.1.4. Etcd

This is like a shared notebook where the system keeps

track of everything important.

2.1.5. Resilience

Kubernetes is designed to be reliable. If a worker node (or

even part of the control plane) fails, it can automatically shift

the work to other nodes, ensuring your applications keep

running.

Kubernetes is a valuable tool for managing containerized

applications. It simplifies the process of deploying, scaling,

and operating these applications, allowing developers to focus

on creating great software.

3. Multi-Region Kubernetes Setup
Imagine you’re playing a popular online game. To ensure

a seamless and uninterrupted experience, the game’s servers

must be highly reliable and always accessible. This is where

multi-region, multi-cluster, and multi-AZ configurations

come into play.

3.1. Multi-Region

Multi region is running your applications across different

geographical locations to enhance availability, reduce latency,

and improve disaster recovery.

A global online game might deploy servers in North

America, Europe, and Asia. This setup guarantees that players

can connect to the game from anywhere in the world,

minimizing disruptions due to local network issues.

3.2. Multi-Cluster

Multi-cluster means using several different Kubernetes

setups in the same region to run your application, helping it

handle more users and stay online even if one setup has

problems.

Within North America, there could be several Kubernetes

clusters located in New York, Los Angeles, and Seattle. This

provides redundancy, ensuring that local issues in one area

won’t impact the entire player base, enhancing overall

resilience.

3.3. Multi-AZ

Kubernetes multi-zone is helpful for your application

running across different data centers within the same region to

improve availability and reduce downtime.

Each Kubernetes cluster might be distributed across

multiple availability zones within a single city. This

distribution balances the workload and improves fault

tolerance, making the infrastructure more robust against

outages.

Using multi-region and multi-AZ Kubernetes setups is

key to keeping your services always available. These setups

help the system stay reliable during failures, improve

performance, lower delays, and provide a better user

experience. For businesses that depend on being online all the

time, like online gaming or e-commerce, setting up these

configurations is a must.

Praveen Chaitanya Jakku / IJCTT, 72(10), 106-112, 2024

108

KUBERNETES CLUSTER - US

KUBERNETES CLUSTER - EU

Fig. 2 Kubernetes Multi Region cluster

4. Pod Replication and Scaling
Imagine your Kubernetes application is like a pizza

delivery service. When there’s a rush of orders, you need to

quickly add more delivery drivers and pizza makers. That’s

where pod replication and scaling come in.

4.1. Pod Replication

4.1.1. Preventing Service Interruptions

Just like having extra delivery drivers ready in case one

gets sick, pod replication ensures that your application

remains available. By maintaining multiple pod replicas,

Kubernetes can automatically replace any unhealthy

instances, keeping your service running smoothly.

4.1.2. Workload Distribution

More drivers mean the workload is spread out, so no

single driver gets too overwhelmed. In Kubernetes, this helps

with load balancing by distributing incoming traffic across

multiple replicas, enhancing overall performance.

4.2. Scaling

4.2.1. Dynamic Resource Adjustment

Scaling is like hiring or letting go of drivers based on how

many orders are coming in. In Kubernetes, you can increase

or decrease the number of pods in a deployment to match

demand using either manual or automatic scaling methods.

Node1

POD POD

Node2

POD POD

Node3

POD POD

API

Server

Schedule

r

Controller

Manager Load

Balancer

Load

Balancer

Node1

POD POD

Node2

POD POD

Node3

POD POD

API

Server

Schedule

r

Controller

Manager

 Developer

Global server

load balancer

User

Developer

Praveen Chaitanya Jakku / IJCTT, 72(10), 106-112, 2024

109

4.3. Cost Efficiency

By only having as many drivers as you need, you save

money. This is called resource optimization, where you

allocate resources efficiently based on current workload.

4.3.1. Maximizing Throughput

Scaling ensures you have enough drivers to deliver pizzas

quickly, making sure your service can handle busy times

without delays.

4.4. Together, Pod Replication and Scaling

4.4.1. Enhancing System Reliability

If one driver can’t work, others can step in, which means

your service is more reliable. This fault tolerance is crucial for

maintaining uptime and ensuring user satisfaction.

4.4.2. Improving Response Times

With the right number of drivers, pizzas get delivered

faster, optimizing how resources are utilized across your

application.

4.4.3. Reducing Operational Costs

You only have as many drivers as necessary, which helps

keep expenses down and maximizes your return on

investment. Pod replication and scaling are crucial for keeping

your Kubernetes application reliable and efficient. They help

ensure that you can handle changes in demand while

maintaining a good level of service.

5. The Importance of Load Balancing and

Networking
Imagine your Kubernetes application as a busy restaurant.

When too many customers arrive at once, the kitchen can get

overwhelmed, leading to long wait times. That’s where load

balancing steps in, acting like a savvy host who directs

customers to the least busy tables, ensuring everyone gets

served promptly. In Kubernetes, load balancing is essential for

keeping your applications running smoothly, even during peak

traffic. It spreads incoming requests across multiple instances

of your application, preventing any single instance from

becoming overloaded.

5.1. How Does Kubernetes Load Balancing Work?

Kubernetes employs a few key components to manage

load balancing.

5.1.1. Services

Think of these as virtual front desks that guide traffic to

the right places. They group multiple instances of an

application and provide a stable address for clients to connect

to.

5.1.2. Ingress

This acts like a sophisticated doorman at the restaurant

entrance. Ingresses control how traffic enters your Kubernetes

cluster and can route it to different services based on specific

rules.

5.1.3. Network Policies

Think of these as security guards that manage which

components can communicate within your Kubernetes cluster.

5.1.4. Horizontal Pod Auto scale (HPA)

Imagine this as a smart manager who automatically hires

more staff (pods) when the restaurant gets busy and lets some

go when things slow down.

By effectively utilizing load balancing, you can ensure

that your Kubernetes applications handle traffic surges

without crashing, providing a smooth experience for users.

6. Keeping Your Kubernetes Application

Healthy: A Guide to Probes
Imagine your Kubernetes apps as a team of workers. To

make sure they’re always ready and performing well, you need

to check in on them regularly. That’s where health checks,

liveness probes, startup probes, and readiness probes come in.

6.1. Health Checks

Think of health checks as a daily check-in with your team.

They help you determine if a worker (pod) is still alive and

kicking. If a worker is sick or not responding, you can act like

replacing them.

6.2. Liveness Probes

Liveness probes are like asking a worker, “Are you still

alive?” They check if a pod is still running and responding. If

a pod is unresponsive for too long, Kubernetes will terminate

it.

6.3. Startup Probes

Startup probes are like asking a new worker, “Are you

ready to start working?” They check if a newly started pod is

ready to receive traffic. If a pod isn’t ready after a certain time,

Kubernetes will restart it.

6.4. Readiness Probes

Readiness probes are like asking a worker, “Are you

ready to take on tasks?” They check if a pod is prepared to

receive traffic. If a pod isn’t ready, Kubernetes will remove it

from service discovery, preventing new traffic from being

routed to it.

Praveen Chaitanya Jakku / IJCTT, 72(10), 106-112, 2024

110

6.5. This tells Kubernetes to

• Check if the pod is ready to start (startup probe).

• Check if the pod is ready to receive traffic (readiness

probe).

• Check if the pod is still alive (liveness probe).

6.6. Best Practices

• Regular Checks: Check on your workers often.

• Choose the Right Checks: Pick the best way to check

based on your app.

• Set Check Intervals: Decide how often to check.

By using health checks, liveness probes, startup probes,

and readiness probes, you can ensure your Kubernetes apps

are always in top shape and ready to serve your users.

7. The Importance of StatefulSets, Daemon Sets,

and Persistent Storage

Imagine your Kubernetes applications as a busy pizza

restaurant. To keep your customers happy and ensure they

always get their favourite pizza, you need a reliable system.

Just like a well-run restaurant, Kubernetes uses specific

components to maintain high availability.

7.1. StatefulSets

StatefulSets are like your expert pizza chefs, each

specializing in unique recipes. To manage stateful

applications, Kubernetes uses StatefulSets. In Kubernetes

statefulsets used to manage apps that need:

7.1.1. Unique Identity

Each pod has a unique identity, ensuring that data is

preserved even if pods restart.

7.1.2. Ordered Deployment

Pods start in a specific order, preventing confusion and

ensuring everything is ready.

7.1.3. Stable Storage

StatefulSets work with persistent storage, like a

refrigerator storing ingredients, ensuring data stays intact,

even if pods restart.

7.2. DaemonSets

DaemonSets are like kitchen helpers who keep everything

running smoothly.

In Kubernetes, DaemonSets make sure a copy of a

specific pod runs on every node in the cluster or on the nodes

you choose. They’re great for things like monitoring, logging,

or running services on all nodes.

7.2.1. Consistent Coverage

DaemonSets ensures a specific pod runs on every node in

your cluster, like a helper cleaning the kitchen on every floor.

7.2.2. Node-Specific Tasks

They handle important tasks like checking ovens or

ensuring there are enough ingredients.

7.3. Persistent Storage

Persistent storage is like your storage room for

ingredients.

7.3.1. Data Longevity

It keeps your application data secure, even if pods are

stopped.

7.3.2. Flexible Solutions

Kubernetes offers different storage options to suit your

needs.

7.3.3. Scalability

It allows you to scale up your resources as your business

grows.

StatefulSets, DaemonSets, and persistent storage are

essential for maintaining high availability in Kubernetes. They

work together to create a reliable environment where

applications can thrive, providing a great experience for your

users. By understanding and using these features, you can

build a strong system that keeps your applications running

smoothly.

8. Disaster Recovery Strategies
Imagine your application website as a busy airport. If the

main terminal suddenly shuts down, things become hectic. But

with a backup plan, you can quickly divert operations to a

secondary terminal, minimizing disruption.

8.1. Why is a Disaster Recovery Plan Crucial?

8.1.1 Swift Recovery

A plan helps you quickly get back online after a crash,

preventing customer frustration and financial losses.

Data Protection

It safeguards sensitive customer information and ensures

business continuity.

Customer Trust

It demonstrates reliability and builds customer

confidence.

Praveen Chaitanya Jakku / IJCTT, 72(10), 106-112, 2024

111

Compliance

It helps you meet industry regulations and avoid legal

issues.

Cost Control

Minimizes downtime and financial losses.

8.1.2. A Simple Recovery Plan

Regular Backups

Back up your data frequently to ensure quick restoration.

Secondary Server

Have a backup server ready to take over if the primary

one fails.

Testing

Regularly test your recovery plan to ensure it works as

expected.

A disaster recovery plan is like insurance. You hope you

never need it, but it’s invaluable when disaster strikes. By

investing in a solid plan, you’re protecting your application

and ensuring a smooth experience for your users.

9. How Monitoring and Alerts helps
Imagine you’re running an e-commerce application

during a big sale event.

In Kubernetes, monitoring and alerting constantly watch

your system’s health and automatically notify you if

something goes wrong.

9.1. Monitoring Setup

You have a monitoring system (like Prometheus) that

tracks metrics such as CPU usage, memory consumption,

request latency, and error rates.

9.2. Early Detection

Midway through the sale, your monitoring dashboard

shows a sudden spike in CPU usage on one of your application

pods. This alerts you to potential overload before customers

start experiencing slow load times or errors.

9.3. Alerts Triggered

An alert is triggered when CPU usage exceeds 80% for a

certain duration. Your team receives a notification (via Slack

or email) to investigate.

9.4. Investigation

Upon checking, the team discovered that a new feature

(like a recommendation engine) was consuming more

resources than expected.

9.5. Response

With this information, you can either optimize the feature

or scale up the number of replicas for that pod to handle the

increased load, ensuring a smooth user experience.

9.6. Post-Incident Review

After the sale, you analyze the incident and decide to

implement rate limiting for the recommendation engine to

prevent similar spikes in the future.

Monitoring and alerts were essential for maintaining the

application’s performance during a critical time. They

provided insights that allowed your team to react quickly and

effectively, ensuring that customers had a positive experience

even when challenges arose. By investing in these practices,

you help safeguard your application’s reliability and

performance, leading to greater user satisfaction and trust.

10. Documentation and Best Practices
Maintaining clear and up-to-date documentation is

essential for high availability. Record detailed information

about your deployment setup, including service dependencies

and communication methods. Create checklists for routine

tasks, like backups and health checks, to ensure nothing is

missed. Encourage team collaboration to regularly review

documentation, promoting shared ownership and identifying

gaps.

A strong monitoring system is equally important. Use

tools to track key performance metrics such as response times

and error rates and set up alerts for any issues. Regularly

review monitoring data to catch trends before they impact

users.

Running disaster recovery drills is crucial. Simulate failure

scenarios, like network outages, to test recovery procedures

and document the results. Ensure all team members

understand their roles during incidents.

Finally, encourage a culture of collaboration through

regular meetings to discuss performance and risks. An open

environment for sharing ideas enhances communication and

strengthens the reliability of your Kubernetes applications.

Conclusion
Ensuring the continuous availability of applications is

essential for maintaining business operations and delivering

an exceptional user experience.

This paper highlights several key strategies, including a

deep understanding of Kubernetes architecture, the

implementation of multi-region deployments, ensuring pod

Praveen Chaitanya Jakku / IJCTT, 72(10), 106-112, 2024

112

replication, effective load balancing, and strong disaster

recovery planning.

By implementing these strategies, organizations can

create strong systems that effectively manage failures and

adapt to evolving demands. Regular health checks and

monitoring are essential for ensuring reliability, enabling

teams to detect and address potential issues before they impact

users. Features such as StatefulSets, DaemonSets, and

persistent storage play a crucial role in maintaining application

performance and protecting data integrity, even under

challenging conditions. Additionally, encouraging a culture of

documentation and continuous improvement inspires teams to

prioritize high availability and respond proactively to

challenges. By adopting these principles, organizations can

reduce downtime, build customer trust, and achieve the uptime

objectives essential in today’s competitive environment. With

a solid plan and the right tools, Kubernetes applications can

consistently perform well and keep users happy, setting a

strong foundation for future growth and success.

References
[1] Kubernetes Documentation, Kubernetes, 2024. [Online]. Available: https://kubernetes.io/docs/home/

[2] DavidW, Building a Multi-Region Kubernetes Application, Medium, 2024. [Online]. Available: https://overcast.blog/building-a-multi-

region-kubernetes-application-e8a0426a4814

[3] Kubernetes StatefulSets: Scaling & Managing Persistent Apps, Spot.io, 2024. [Online]. Available: https://spot.io/resources/kubernetes-

autoscaling/kubernetes-statefulsets-scaling-managing-persistent-apps/

[4] Munib Ali, Increase Kubernetes Reliability: A Best Practices Guide for Readiness Probes, Fairwinds, 2023. [Online]. Available:

https://www.fairwinds.com/blog/increase-kubernetes-reliability-a-best-practices-guide-for-readiness-probes

[5] Panchanan Panigrahi, Deployment vs. StatefulSet vs. DaemonSet: Navigating Kubernetes Workloads, Dev, 2024. [Online]. Available:

https://dev.to/sre_panchanan/deployment-vs-statefulset-vs-daemonset-navigating-kubernetes-workloads-190j

[6] Hritik Roy, What You Need to Know About Kubernetes Disaster Recovery, Equinix, 2023. [Online]. Available:

https://deploy.equinix.com/blog/guide-kubernetes-disaster-recovery/

[7] Kubernetes Monitoring: The Complete Guide, Kubecost, 2024. [Online]. Available: https://www.kubecost.com/kubernetes-monitoring/

[8] Kube-Proxy, Kubernetes, 2024. [Online]. Available: https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/

[9] Abhisman Sarkar, Understanding ReplicaSet vs. StatefulSet vs. DaemonSet vs. Deployments, Semaphore, 2023. [Online] Available:

https://semaphoreci.com/blog/replicaset-statefulset-daemonset-deployments

https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/

